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In vibration power #ow analysis, often the vibration behaviour of in"nite
structures is required. The modelling of in"nite structures using the "nite element
method has been discussed. By considering the impedance of a "nite beam and
"nite plate, theoretical formulae for a spring}damper combination to match these
impedances are derived. Examples are given for a rather short (200 mm) beam and
a small (400 mm diameter) plate with spring}dampers applied to the edges of the
structures using the "nite element method. Results of the driving point mobility
indicate that these "nite structures simulate an in"nite beam and an in"nite plate
very well. Furthermore, the surface mobility of an in"nite plate over a square
contact area subject to a uniform conphase force excitation has been calculated
successfully using just under 8 times fewer elements than a previous study.
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1. INTRODUCTION

In recent years, the vibration power #ow in structures has received more and more
attention because it provides fundamental understanding to the transmission of
vibration and hence structure-borne sound, thus allowing e!ective control to be
implemented. The vibration behaviour of in"nite structures is essential for
vibration power #ow analysis as it has been demonstrated by Cremer et al. [1] that
the power supplied to a "nite system by a random force is equal to the power
supplied by that force to a corresponding in"nite system. Thus, considerable insight
may be gained by studying the power #ow in in"nite structures. However, in"nite
structures do not exist in practice and it is not a trivial exercise to verify the
theoretical results derived for in"nite structures. Experimentally, one may use
a "nite structure with the edges embedded into sand which absorbs the incident
energy but the results are usually acceptable only at high frequencies. Furthermore,
one may wish to study the coupling between a "nite structure and an in"nite
structure. An alternative approach to the experimental method is to use numerical
methods, predominantly, the "nite element method (FEM). For example, in their
study of the dynamic interactions between the railway vehicle and track, Dong et al.
[2] developed a "nite element model of an in"nitely long track. The objective of this
paper is, therefore, to discuss the modelling of in"nite structures by the "nite
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element method. In particular, both in"nite beams and in"nite plates will be
considered and the results will be compared with the theoretical results.

2. THEORETICAL ANALYSIS

In the "nite element method (FEM), an &&in"nite'' structure has to be modelled
using a "nite structure because a truly &&in"nite'' structure would require an in"nite
number of elements. The main di!erence between "nite and in"nite structures is
that while wave re#ections would occur at boundaries for "nite structures, they
would be absent for in"nite structures. Therefore, if the wave re#ection at the
boundaries for "nite structures could be eliminated, the vibration behaviour would
basically be like that of the corresponding in"nite structure.

According to the wave theory, wave re#ection occurs where the wave impedance
is not continuous (i.e., not matched). The wave impedance, in acoustics, is de"ned
[3] as

Z
w
"

p
u
, (1)

where p is the sound pressure at a point in the medium, and u is the particle velocity
at the same point. This parameter gives an indication of the acoustic energy
transmission in the medium. Normally, it is a complex number which depends on
the properties of the medium and the behaviour of the sound source, and could
vary with the position in the medium. For an acoustic wave, if Z

w
at a point in the

medium is a real number and is equal to the speci"c acoustic impedance of the
medium (oc), the acoustic energy would propagate through this point without any
loss and re#ection. However, if Z

w
is di!erent from oc, wave re#ection would occur.

Obviously, this mismatch of the wave impedance usually happens at the physical
boundary of the medium, where there is a discontinuity in the speci"c impedance at
the interface of two media. Therefore, in order to simulate an unbounded medium
with a bounded medium, the wave impedance at the boundaries has to be adjusted
so that the re#ection wave can be totally eliminated without a!ecting the incident
wave.

The waves in a structure are much more complicated than acoustic waves.
Normally, there are three types of structural waves: longitudinal waves, transverse
waves, and bending waves [1]. For longitudinal and transverse waves, since their
equations of motion take the same form as those of acoustic waves which are
longitudinal waves, the discussion made above should apply. However, for bending
waves, since the equation of motion is a fourth order partial di!erential equation,
the characteristics of bending waves would be di!erent from those of longitudinal
and transverse waves. Since the bending motion of a structure is a major concern in
vibro-acoustic analysis, some basic concepts about bending waves are reviewed
below.

Unlike other waves, bending waves must be represented by four "eld variables
instead of two. Normally, the transverse velocity u, the angular velocity X, the
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bending moment M, and the shear force F are four variables commonly used in the
analysis. Consider a one-dimensional bending wave propagating in the x direction
as an example. The spatial relationships between these variables and the transverse
displacement g can be written as [1] (omitting the time component e+ut, without
loss of generality)

u(x)"jug(x), X(x)"ju
dg(x)
dx

, M(x)"!B
d2g(x)
dx2

, F (x)"B
d3g(x)
dx3

,

(2)

where j is the imaginary numberJ!1, t is time, u is the angular frequency and B is
the bending sti!ness. Since at a given point, the motion of a structural element
includes the movement due to the variation of the shear force F(x), as well as the
rotation due to the variation of the bending moment M(x), the power transmitted
through this point consists of the power due to the bending moment P

M
and that

due to the shear force P
F
, which can be expressed as [1]

P
M

(x)"1
2
Re[M(x) )X(x)*],

(3)
P

F
(x)"1

2
Re[F(x) ) u (x)*].

Here the superscript * represents complex conjugate. For a plane wave of the form
g(x)"Ae~+kx, where A is the amplitude and k is the wavenumber, it has been
shown that P

M
and P

F
are out of phase by a quarter period [1]. This means that

when P
M

is maximum, P
F

is zero. Also, the force wave impedance Z
f

and the
moment wave impedance=

m
for a plane wave can be shown as [1]
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In order to examine the wave re#ection at the boundary, two typical structures,
namely, a beam and a plate, are analyzed below.

2.1. BEAM

Assume a semi-in"nitely long beam in which a bending wave is approaching the
end. Owing to the discontinuity of the beam at the boundary, a re#ection wave
would be generated. Also, a decay term would happen near the boundary. The
general solution of the vibration displacement can be written as [4]

g(x)"A
1
e~+kx#A

2
e+kx#A

3
ekx, (5)
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where A
1
, A

2
, and A

3
are three constants dependent on the boundary conditions of

the beam. Three typical boundary conditions are: simply supported, clamped and
free, which can be expressed by [4]

g(x) D
x/x0

"0,
d2g(x)
dx2 K

x/x0

"0 for a simply supported end,

g(x) D
x/x0

"0,
dg(x)
dx K

x/x0

"0 for a clamped end,

and

d3g(x)
dx3 K

x/x0

"0,
d2g(x)
dx2 K

x/x0

"0 for a free end.

It can be seen that for a clamped end, the force impedance and the moment
impedance are both in"nite due to the zero lateral displacement and the zero
angular displacement. For a simply supported boundary, the force impedance is
in"nite, while the moment impedance is zero because of the zero moment. For a free
end, the force impedance and the moment impedance are both zero. Obviously,
since the impedance at the boundary is di!erent from the characteristic impedance
of the structural material, wave re#ection would occur at the boundary.

To change the impedance at the boundary, a simple way is to introduce
a spring}damper element, as shown in Figure 1. The impedance of a spring}
damper can be written as

Z (u)"C#

K
ju

, (6)

where C is the damping coe$cient, and K is the spring sti!ness. Since for the simply
supported and clamped end, the lateral displacement is forced to zero, the
spring}damper is only applicable to the free end.

At the free end connected to a spring}damper, the shear force B(d3g(x)/dx3) is no
longer zero due to the coupling. However, since the spring}damper shown in
Figure 1 does not a!ect the moment at this point, the moment is still zero at the
end. Thus,

M(x) D
x/0

"!B
d2g(x)
dx2 K

x/0

"B(k2A
1
e~+kx#k2A

2
e+kx!k2A

3
ekx) D

x/0
"0 (7)

which gives

A
3
"A

1
#A

2
. (8)



Figure 1. A semi-in"nite beam with a spring}damper system at one end.

INFINITE STRUCTURES 457
The shear force at the free end should be equal to the force of the spring}damper,
which can be written as

B
d3g(x)
dx3 K

x/0

"juZ(u)g (x) D
x/0

. (9)

Substituting equations (5) and (6) into equation (9), we have

A
Bk3

u
!C#j

K
uBA

1
#A!

Bk3

u
!C#j

K
uBA

2
#A!j

Bk3

u
!C#j

K
uBA

3
"0.

(10)

By using equation (8), equation (10) becomes

C
Bk3

u
(1!j)!2C#j

2K
u DA

1
#C!

Bk3

u
(1#j)!2C#j

2K
u DA

2
"0. (11)

Since A
1

is the amplitude of the incident wave which must not be zero, for equation
(11) to be always valid, we must have

Bk3

u
(1!j)!2C#j

2K
u

"0,

(12)
A

2
"0.

Equation (12) therefore indicates that if the damping coe$cient C, and the spring
sti!ness K satisfy the relationships

C"

Bk3

2u
, K"

Bk3

2
(13)

the re#ection wave can be suppressed. In order to examine the power transmission
in the beam under this circumstance, substituting equation (13) back to equations
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(2) and (5), we have

g (x)"A
1
(e~+kx#ekx), M(x)"Bk2A

1
(e~+kx!ekx), F(x)"Bk3A

1
( je~+kx#ekx).

(14)

It can be seen that although the re#ection wave has been eliminated, an
exponentially decaying near "eld still exists. However, in the far "eld (i.e., large
negative x) where the term ekx can be neglected, it can be easily proved that
the wave impedance is the characteristic impedance. In the near "eld, the force
wave impedance can be obtained from equation (13):

Z
f
(x, u)"

Bk3

ju
je~+kx#ekx
e~+kx#ekx

. (15)

Obviously, this impedance is a complex number which means there is energy
storage in the near "eld. At x"0, Z

f
"Bk3(1!j)/2u. Note that the impedance of

the spring}damper is also Z"Bk3 (1!j)/2u. Therefore, the energy stored in the
near "eld would be exchanged with that in the spring}damper without a!ecting the
power transmission of the active power. To verify this, the power due to the shear
force and the moment can be obtained by using equations (3) and (14):

P
F
(x)"1

2
Re[F(x) ) u (x)*]"1

2
Buk3 DA

1
D2[1#(cos kx#sin kx)ekx],

(16)
P

M
(x)"1

2
Re[M(x) )X(x)*]"1

2
Buk3 DA

1
D2[1!(cos kx#sin kx)ekx].

It can be seen that at any position of the beam, including the near "eld, the total
power transmitted is always a constant ("Buk3 DA

1
D2). Also, at x"0, the power

due to the moment is zero, while the total power is carried by the shear force and
the corresponding lateral movement. This therefore guarantees that by only
applying one spring}damper at the free end of the beam, the re#ection wave can be
e$ciently suppressed.

2.2. PLATE

The bending wave in a plate is two-dimensional. In order to facilitate the
analysis, a circular plate is chosen, as shown in Figure 2. For a circular plate, the
general solution of the vibration displacement can be written by employing the
polar co-ordinates as [1]

g (r, h)"[A@
1
H(2)

n
(!jkr)#A@

2
H(2)

n
(kr)#A@

3
H(1)

n
(kr)#A@

4
H(1)

n
(!jkr)]cos(nh#u),

(17)

where H(1)
n

( ) ), H(2)
n

( ) ) are Hankel functions of the "rst and second kind, respectively,
A@ , A@ , A@ , A@ and / are "ve constants dependent on the boundary conditions
1 2 3 4



Figure 2. A circular plate with spring}dampers distributed along the boundary.
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of the plate, and n is an integer denoting the mode order of the circumferential
modes.

Since the vibration solution near the boundary of a plate is of interest, by
assuming the boundary is in the far "eld of the excitation region, equation (17) can
be simpli"ed by using the large value expressions of the Hankel functions:

g (r, h)"CA1

e~+kr

Jr
#A

2

e+kr

Jr
#A

3

ekr

JrD cos(nh#u) (18)

Here A
1
, A

2
and A

3
are constants, and the term e~kr/Jr corresponding to

H(2)
n

(!jkr) in equation (17) is neglected in equation (18) because of the far"eld
assumption. From equation (18) it can be clearly seen that to make this circular
plate behave like an in"nite plate, the amplitude of the re#ection wave (A

2
) has to

be zero by changing the impedance at the boundary.
In section 2.1, it was shown that the force impedance can be applied only to the

free end of the structure. Therefore, when introducing the force impedance Z (u) at
the free edge of the plate, the boundary conditions can be written as [4]
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!

2!k
r2

Lg(r, h)
Lr

#

2!k
r2

L2g(r, h)
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By substituting equation (18) into equation (19), and by neglecting the small terms
for large ka (far"eld assumption), we have

A
3
eka"A

1
e~+ka#A

2
e+ka, (20a)

A
1
e~+kaCjk3!

juZ(u)
B D#A

2
e+kaC!jk3!

juZ(u)
B D#A

3
ekaCk3!

juZ (u)
B D"0.

(20b)

By substituting equation (20a) into equation (20b), for A
2
"0 one can obtain

Z (u)"
Bk3 (1!j)

2u
. (21)

This result indicates that by introducing a force impedance properly, the
wave re#ection at the boundary of a circular plate can be e!ectively eliminated.
However, it should be noted that equation (21) is obtained by invoking the far"eld
assumption. Therefore, strictly speaking, the amplitude of the re#ection wave (A

2
)

would only be very small rather than exactly zero by making the force impedance
satisfy equation (21) at the boundary of a circular plate. Actually, for a more general
and rigorous analysis, it can be found that to make A

2
exactly zero, the force

impedance at the boundary may depend on the angle of the incident wave to
the boundary. This makes the modelling of an in"nite plate more di$cult and
complicated. However, equation (21) may be a good enough approximation.

Like modelling in"nite beams, a force impedance may be introduced at the
boundary of a circular plate by using a series of spring}dampers, as shown in
Figure 2. Note that equation (21) is the force impedance per unit length. By
combining equation (6) with equation (21), the damping coe$cient C, and the
spring sti!ness K for each spring}damper is

C
i
"

Bk3

2u
Dl

i
, K

i
"

Bk3

2
Dl

i
, (22)

where Dl
i
is the equivalent length that the ith spring}damper takes e!ect. If the

spring}dampers are distributed uniformly, Dl
i
"2na/N, where N is the total

number of the spring}dampers used.

3. FEM MODELLING

In order to verify the above results and model the vibration behaviour of in"nite
beams and plates by the "nite element method, a commercial FEM code, ANSYS
5.4, was used. All the calculations were made on a SUN ENTERPRISE 4500

workstation.



Figure 3. The real part of the driving point mobility spectrum of a beam.** "nite length 0)2m;
. . . . . . in"nite model (0)2m); L theory [1].

Figure 4. A "nite beam with a spring}damper at one end.
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3.1. INFINITE BEAM

A steel beam with length 200 mm, 1 mm in thickness and 10 mm in width was
"rstly created using 20 BEAM3 elements and 21 nodes. By setting the two ends free
and applying a point force at one end of the beam, the real part of the driving point
mobility can be obtained by using the Harmonic Analysis in ANSYS. The results
are shown in Figure 3. It can be seen that there are distinct peaks due to the
vibration modes of the beam. In order to simulate an in"nite beam, a spring}
damper was then applied to the other end of the beam, as shown in Figure 4. In
ANSYS, a spring}damper was modelled as an element with two nodes, one coupled
to the beam and the other "xed. The element type was COMBIN14. Since the
damping coe$cient and the sti!ness of the spring}damper change with frequency
as shown in equation (13), substep "les have to be created in ANSYS for each
frequency so that the damping coe$cient and the sti!ness of the spring}damper
can change accordingly. In the calculations, 20 substep "les were created for 20
frequencies from 100 to 2000 Hz with a step of 100 Hz. Since for a semi-in"nite



Figure 5. The real part of the driving point mobility spectrum of an in"nite beam.** l"0)2m;
. . . . . . l"0)1m; - - - - l"0)05m; L theory [1].
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beam excited at one end, there would be no vibration modes, the Full method was
used for the Harmonic Analysis in ANSYS. The real part of the driving point
mobility is shown in Figure 3. It can be seen that the curve is quite smooth,
indicating that wave re#ection at the other end is e!ectively eliminated by the spring}
damper. These results agree very well with the theoretical results of Cremer et al. [1].

In order to evaluate the e!ects of the length of "nite beams on the modelling
results, two more beams 100 and 50 mm in length, respectively, were used. The
number of elements per unit length was kept the same at 1 per 10 mm. The real part
of the driving point mobility for these three beams is shown in Figure 5. It can be
seen that as the "nite beam becomes shorter, the discrepancies at low frequencies
become more signi"cant. This is because at low frequencies, the near-"eld region
becomes larger and may include the excitation point, thus changing the response at
the driving point. On the other hand, the excitation would also have its own near
"eld which is neglected in our analysis. When this near "eld extends to the end with
the spring}damper attached, obviously the incident power may not be fully
absorbed by the spring}damper designed without considering the e!ects of the near
"eld. Therefore, in order to model the vibration behaviour of an in"nite beam by
introducing a force impedance, the "nite length beam should be chosen to be at
least 200 mm for a low-frequency limit of 100 Hz, based on the results in Figure 5.

3.2. INFINITE PLATE

In order to model the vibration behaviour of an in"nite plate, a steel circular
plate 200 mm in radius, and 1 mm in thickness was created using 640 SHELL63



Figure 6. Finite element model of a circular plate.

Figure 7. The real part of the driving point mobility spectrum of a plate. ** "nite plate; . . . . . .
in"nite plate model; L theory [1].
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elements and 681 nodes, as shown in Figure 6. Note that the "nite element model
consists of a square region to simulate the surface mobility of a square contract
area, as discussed in section 3.3 below. When the plate is excited by a point force at
r"105 mm, the real part of the driving point mobility calculated by ANSYS is
shown in Figure 7. It can be seen that corresponding to each vibration mode of this
circular plate, there is a peak in the driving point mobility. To simulate an in"nite
plate using this circular plate, 80 spring}dampers were attached to the 80 nodes at
the edge of the plate, as shown in Figure 6. Also 20 substep "les were used for
frequencies from 100 to 2000 Hz with a step of 100 Hz. When a point force is



Figure 8. The real part of the driving point mobility spectrum of an in"nite plate model.** r"0;
- - - - r"0)12m; } } } r"0)183m; ) ) ) ) ) r"0)06m; }}} r"0)15m; } ) } ) } r"0)2m; d theory [1].
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applied at the centre of the plate, by using the Full method for the Harmonic
Analysis in ANSYS, the driving point mobility can be obtained. It can be seen from
Figure 7 that the FEM results of the driving point mobility agree very well with the
theoretical result for an in"nite plate given by Cremer et al. [1]

In order to further examine the in"nite extent of this plate model, the driving
point mobility at di!erent distances r from the centre of the plate was calculated, as
shown in Figure 8. It can be seen that as the excitation position approaches the
edge of the plate, the discrepancies between the theoretical results and the FEM
results become larger, especially at low frequencies. This is due to the in#uence of
the decay "eld near the plate boundary and the excitation position. In particular,
when the force was applied at the edge, the real part of the driving point mobility is
not of the nature of an in"nite plate. Therefore, for the plate model used here, there
is a region, for example r(150 mm, in which the plate vibrates like an in"nite
plate. However, it can be seen from Figure 8 that even within this region, the
agreement between the FEM and the theoretical results are not perfect even at high
frequencies. This is because, as stated in section 2.2, equation (21) is obtained by
invoking some simpli"cations. Nevertheless, the accuracy shown in Figure 8
appears to be good enough for vibro-acoustic analysis using a 400 mm diameter
circular plate for frequencies above 300 Hz.

3.3. SURFACE MOBILITY OVER A SQUARE CONTACT AREA OF AN INFINITE PLATE

In the study of vibration isolation, the mobility of a source or receiving structure
is often employed in the analysis of the dynamic characteristics of build-up systems.
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Classical mobility methods simplify the excitation area between two subsystems as
a point-like contact, hence the necessity of calculating the point mobility. However,
in a practical situation, almost every contact area between a machine and its
supporting structure has a characteristic dimension which is not negligible. For
#exural waves in a plate, if the dimensions of the contact area are larger than
approximately 10 percent of the governing wavelength [1], point mobility esti-
mates can lead to signi"cant errors. Thus the mobility over a "nite contact area,
known as surface mobility, has to be considered. The surface mobility of an in"nite
thin plate over a square contact area subject to a uniform conphase force excitation
has been formulated theoretically by Dai et al. [5] using the e!ective point mobility
concept and complex power approach. The theoretical result has been veri"ed
numerically and experimentally by Dai et al. [6]. In the numerical calculations of
the surface mobility, Dai et al. [6] employed the "nite method to simulate an
in"nite plate by using a very large plage (4)8 m]9)6 m) and curve-"tting techniques
to smooth out the peaks in the mobility due to imperfect simulation. In the FEM
calculations made by Dai et al. [6], they used 4896 elements. It is, therefore,
interesting to compare these results with the results of the surface mobility obtained
by a 400 mm diameter circular plate as shown in Figure 6. The circular plate model
consists of 400 elements over a square area of 212 mm]212 mm and 240 elements
over the remaining area. There were 100 substep "les for frequencies from 50 to
5000 Hz with a step of 50 Hz. The surface mobility is calculated using the e!ective
point mobility by discretizing the square contact area into 3]3 points and 9]9
points, respectively, and the results are plotted in Figure 9 as a function of
Helmholtz number kw/2 based on the halfwidth of the contact area. Note that in
Figure 9. The surface mobility of an in"nite plate over a square contact area subject to a uniform
conphase force distribution. == theoretical; #9 points (FEM); L 81 points (FEM).



466 C. WANG AND J. C. S. LAI
Figure 9, the surface mobility has been normalized using the point mobility. The
discrepancies between the calculations for 9 and 81 points are mainly a result of
discretization error. There is generally a very good agreement between the results
of the 81 points and those of the theoretical method. The small di!erences at
Helmholtz numbers less than 1 are due to the e!ect of the near "eld which has been
neglected in the modelling. The small di!erences between the FEM and theoretical
results that emerge at Helmholtz numbers greater than 5 are due to a mesh that
may not be "ne enough. At a Helmholtz number of 6, the number of elements per
wavelength is only 3)5 based on the largest element and 10 based on the smallest
element.

4. CONCLUSIONS

Theoretical analysis of the impedance of a "nite structure such as a beam and
a plate has been conducted. These results allow an in"nite beam and an in"nite
plate to be simulated by the "nite element method using a "nite structure with
appropriate spring}dampers applied to the boundaries of the structure. Examples
given here show that a beam as short as 200 mm with only 20 elements yields results
in good agreement with classical theoretical values for frequencies greater than
100 Hz. Furthermore, by using a 400 mm diameter plate with 640 elements, both
the driving point mobility and the surface mobility over a square contact area are in
good agreement with results obtained by the theoretical method for an in"nite
plate. These examples demonstrate the feasibility of using "nite structures with
spring}dampers to simulate in"nite structures by the "nite element method.
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